Learning Functions from Imperfect Positive Data
نویسنده
چکیده
The Bayesian framework of learning from positive noise-free examples derived by Muggleton [12] is extended to learning functional hypotheses from positive examples containing normally distributed noise in the outputs. The method subsumes a type of distance based learning as a special case. We also present an effective method of outlieridentification which may significantly improve the predictive accuracy of the final multi-clause hypothesis if it is constructed by a clause-by-clause covering algorithm as e.g. in Progol or Aleph. Our method is implemented in Aleph and tested on two experiments, one of which concerns numeric functions while the other treats non-numeric discrete data where the normal distribution is taken as an approximation of the discrete distribution of noise.
منابع مشابه
Supervised Learning in Imperfect Information Game
Bridge is an international imperfect information game played with similar rules all over the world and it is played by millions of players. It is an intelligent game, which increases the creativity with multiple skills and knowledge of human mind. Because no player knows exactly what moves other players are capable of making. It is viewed as an imperfect information game. It is well defined in ...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملM2ICAL: A Tool for Analyzing Imperfect Comparison Algorithms
Practical optimization problems often have objective functions that cannot be easily calculated. As a result, comparison-based algorithms that solve such problems use comparison functions that are imperfect (i.e. they may make errors). Machine learning algorithms that search for game-playing programs are typically imperfect comparison algorithms. This paper presents MICAL, an algorithm analysis...
متن کاملBiding Strategy in Restructured Environment of Power Market Using Game Theory
In the restructured environment of electricity market, firstly the generating companies and the customers are looking for maximizing their profit and secondly independent system operator is looking for the stability of the power network and maximizing social welfare. In this paper, a one way auction in the electricity market for the generator companies is considered in both perfect and imperfec...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کامل